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Abstract

Introduction:Apolipoprotein E (APOE) ε4-carrier status or ε4 allele count are included
in analyses to account for the APOE genetic effect on Alzheimer’s disease (AD); how-

ever, this does not account for protective effects of APOE ε2 or heterogeneous effect

of ε2, ε3, and ε4 haplotypes.
Methods: We leveraged results from an autopsy-confirmed AD study to generate

a weighted risk score for APOE (APOE-npscore). We regressed cerebrospinal fluid

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI con-

tributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at:

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.

© 2023 The Authors. Alzheimer’s & Dementia published byWiley Periodicals LLC on behalf of Alzheimer’s Association.

Alzheimer’s Dement. 2023;1–11. wileyonlinelibrary.com/journal/alz 1

mailto:yrobles@wisc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/alz


2 DEMING ET AL.

P30AG062715, R01 AG021155,

UL1TR000427; NIHNational Center for

Advancing Translational Sciences,

Grant/Award Numbers: S10OD025245-01,

R01AG037639; The Biology of Aging and

Age-Related Diseases training, Grant/Award

Number: T32 AG000213-28; The National

Institute on Aging; The Center for

Demography of Health and Aging NIA Training,

Grant/Award Number: T32AG000129; The

Swedish Research Council, Grant/Award

Number: #2018-02532; European Union’s

Horizon Europe research and innovation

programme under grant agreement,

Grant/Award Number: 101053962; Swedish

State Support for Clinical Research,

Grant/Award Number: #ALFGBG-71320; The

Alzheimer Drug Discovery Foundation

(ADDF), USA, Grant/AwardNumber:

#201809-2016862; The AD Strategic Fund

and the Alzheimer’s Association, Grant/Award

Numbers: #ADSF-21-831376-C,

#ADSF-21-831381-C, #ADSF-21-831377-C;

The Bluefield Project, the Olav Thon

Foundation; The Erling-Persson Family

Foundation, Stiftelsen för Gamla Tjänarinnor,

Hjärnfonden, Grant/AwardNumber:

#FO2022-0270; The European Union’s

Horizon 2020 research and innovation

programme under theMarie

Skłodowska-Curie, Grant/Award Number:

860197; European Union Joint Programme –

Neurodegenerative Disease Research,

Grant/Award Number: JPND2021-00694; The

UKDementia Research Institute at UCL,

Grant/Award Number: UKDRI-1003; The

Swedish Research Council, Grant/Award

Number: #2017-00915; Alzheimer Drug

Discovery Foundation (ADDF), Grant/Award

Number: #RDAPB-201809-2016615; The

Swedish Alzheimer Foundation, Grant/Award

Numbers: #AF-930351, #AF-939721,

#AF-968270; Hjärnfonden, Sweden,

Grant/Award Numbers: #FO2017-0243,

#ALZ2022-0006

(CSF) amyloid and tau biomarkers on APOE variables from the Wisconsin Registry

for Alzheimer’s Prevention (WRAP), Wisconsin Alzheimer’s Disease Research Center

(WADRC), and Alzheimer’s Disease Neuroimaging Initiative (ADNI).

Results: The APOE-npscore explained more variance and provided a better model fit

for all three CSFmeasures than APOE ε4-carrier status and ε4 allele count. These find-
ings were replicated in ADNI and observed in subsets of cognitively unimpaired (CU)

participants.

Discussion: The APOE-npscore reflects the genetic effect on neuropathology and

provides an improvedmethod to account for APOE in AD-related analyses.

KEYWORDS

Alzheimer’s disease, amyloid beta, APOE, biomarkers, cerebrospinal fluid endophenotypes,
phosphorylated tau

1 INTRODUCTION

The apolipoprotein E gene (APOE) is the predominant genetic risk

factor for late-onset Alzheimer’s disease (AD), with three alleles con-

tributing to disease risk: ε2 (reduced risk), ε3 (reference), and ε4
(increased risk). APOE genotype is associated with many AD endophe-

notypes, biomarkers reflecting the underlying neuropathology of amy-

loid plaques and neurofibrillary tangles, such as cerebrospinal fluid

(CSF)1 and positron emission tomography (PET) measures of amyloid

and tau.2 The importance of accounting for the strong genetic effect of

APOE on AD risk has been recognized in many analyses of AD-related

outcomes and researchers often use APOE ε4-carrier status (APOE4-

status: ε4+/ε4−)2,3 or, less frequently, the number of APOE ε4 alleles

(ε4-count: 0, 1, 2).4 Using these methods to model APOE genetic risk

has limitations: (1) APOE4-status and the ε4-count do not account

for the effects of reduced risk conferred by APOE ε2; (2) an assump-

tion of the allele count approach is that genetic risk of APOE ε4 is

strictly additive; and (3) as a dichotomous variable APOE4-status has

limitations in statistical modeling such as loss of statistical power or

problemswithmodel convergence.5 To overcome these limitations, we

previously used a weighted score for APOE genotype based on risk

for AD diagnosis.1,6 Another group used a similar method to model

the APOE genetic effect in polygenic risk scores, weighting the num-

ber of APOE ε2 alleles and the number of APOE ε4 alleles by the effect

sizes reported in the Kunkle et al. genome-wide association study7

for single nucleotide polymorphisms (SNPs) rs7412 (encoding ε2) and
rs429358 (encoding ε4).8 One limitation of these APOE risk scores is

that they are based on clinical diagnosis of AD dementia which can

include preclinical AD appearing as controls and dementia cases due to

non-AD causes.9–11 Here, we propose an improvedmethod to account

for APOE genetic risk for AD in statistical analyses using a weighted

score based on AD neuropathology, providing a pseudo-continuous
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DEMING ET AL. 3

variable that doesnot collapse important genotype categories. By com-

paring AD cases and controls that were confirmed at autopsy, Reiman

et al. showed that the odds ratio (OR) has been overestimated for

APOE ε2/ε2 individuals and underestimated for APOE ε4/ε4 individuals

in clinical risk studies.12 Similar results have been obtained using CSF

endophenotypes as surrogate measures of AD pathology.13 We pro-

pose that using thisAPOEneuropathology-based score (APOE-npscore)

will help researchers more accurately account for the genetic effect of

APOE on the underlying neuropathology of AD. This can increase sta-

tistical power, avoid modeling issues that result from low-frequency

genotypeswith lowcounts, andallows for amorenuancedvariable that

may help distinguish AD fromdiseaseswith similar clinical appearance.

Furthermore, most studies can immediately incorporate the APOE-

npscore in analyses because it is easily derived from existing APOE

genotype data (ε2, ε3, ε4).
CSF biomarkers for amyloid-beta1-42 (Aβ42) and amyloid-beta1-

42/1-40 (Aβ42/40) ratio and phosphorylated tau 181 (ptau181) are

among the gold standard biomarkers for AD. CSF Aβ42 and the

Aβ42/40 ratio decrease early in AD and are negatively correlated with

amyloid PET14 and amyloid plaques presence, a hallmark neuropathol-

ogy of AD.15 CSF Aβ42/40 ratio has been reported to predict PET

amyloid-positivity more accurately than CSF Aβ42 alone, regardless

of clinical diagnosis.16,17 Another key pathological hallmark of AD,

neurofibrillary tangles composed of hyperphosphorylated tau, is pos-

itively correlated with CSF ptau181 concentration.18 The ratio of CSF

ptau181/Aβ42 is predictive of cognitive decline and conversion to AD

dementia.19–21 These CSF biomarkers change before cognitive symp-

toms appear19,22 and can help distinguish AD from other diseases that

are clinically similar.23–25 The correlationwith ADneuropathology and

measurable changes early in disease made these CSF biomarkers ideal

for testing our hypothesis that the APOE-npscore is an improvement

over other methods in accounting for the APOE genetic risk for AD in

statistical analyses.

2 METHODS

2.1 Participants

The Institutional Review Boards of all participating institutions

approved the study, and research was carried out in accordance with

approved protocols. Written informed consent was obtained from

participants or their family members. Data were obtained from lon-

gitudinal studies of preclinical and clinical AD from the Wisconsin

Registry for Alzheimer’s Prevention (WRAP)26 and the Wisconsin

Alzheimer’s Disease Research Center (WADRC). WRAP is a longitu-

dinal observational cohort study, established in 2001, of middle-aged

participants that is enriched with people who have a parental his-

tory of probable-AD dementia. The WADRC was established in 2009

and is one of the National Institute on Aging (NIA) –designated

ADRCs across the United States. Participants enrolled in these stud-

ies provided CSF within 1 year of cognitive testing. Diagnoses were

determined by consensus conference of dementia specialists based

RESEARCH INCONTEXT

1. Systematic Review: We reviewed existing literature for

current methods used to account for APOE genetic risk

in Alzheimer’s disease (AD) research. Although some

studies used variables other than dichotomous APOE

ε4-carrier status (APOE4-status), none used weighted

scores based on autopsy-confirmed AD. There have been

no direct comparisons of different variables used to

account for APOE genetic risk.

2. Interpretation: We observed the neuropathology-based

weighted APOE risk score (APOE-npscore) consistently

provided better model fit for cerebrospinal fluid (CSF)

AD endophenotypes than either APOE4-status or ε4-
count. Our findings demonstrate the benefit of using a

pseudo-continuousvariable like theAPOE-npscore,which

increases statistical power and avoids modeling issues

from small sample sizes.

3. Future Directions: The APOE-npscore can easily be

implemented by studies with APOE genetic data for their

participants. Additional studies in diverse cohorts are

necessary to create a more refined APOE-npscore to

account for APOE genetic risk in a broader context.

on NIA-Alzheimer’s Association (NIA-AA) criteria without reference

to biomarker status.27,28 The combined data in these analyses include

participants with mild cognitive impairment (MCI), dementia due to

suspected AD (dementia-AD), or cognitively unimpaired (CU) individ-

uals.

Data used for replication analyses were obtained from the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(adni.loni.usc.edu).29 The ADNI was launched in 2003 as a public-

private partnership, led by Principal Investigator Michael W. Weiner,

MD.Theprimary goal ofADNIhas been to testwhether serialmagnetic

resonance imaging (MRI), PET, other biological markers, and clinical

and neuropsychological assessment can be combined to measure the

progression of MCI and early AD. For up-to-date information, see

www.adni-info.org.

2.2 Genotyping and scoring

DNA extracted from whole blood samples from WADRC and WRAP

participantswas genotyped forAPOE ε2 andAPOE ε4using competitive

allele-specific PCR-based KASP genotyping for rs7412 and rs429358,

respectively.6 Data downloaded from the ADNI database were

obtained fromDNA extracted from blood, as described previously.30

To generate the APOE-npscore we used a natural log (ln) transfor-

mation of the OR values reported in a study of APOE genetic risk in

autopsy-confirmed AD cases (n = 4018) and controls (n = 989), none
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4 DEMING ET AL.

of whomwere participants in our analyses.12 OR values were obtained

from the Reiman et al., supplementary table which had OR calculated

for each APOE genotype, using ε3ε3 as the reference, after adjusting

for age and sex: ε2ε2 OR = 0.16, ε2ε3 OR = 0.40, ε3ε3 OR = 1, ε2ε4
OR = 2.47, ε3ε4 OR = 5.71, and ε4ε4 OR = 26.9312. By using the

ln(OR), the APOE-npscore is negative for haplotypes associated with

reduced risk for AD compared to ε3ε3, resulting in the APOE-npscore:

ε2ε2=−1.833, ε2ε3=−0.916, ε3ε3=0, ε2ε4=0.904, ε3ε4=1.742, and

ε4ε4= 3.293.

2.3 CSF collection and assays

CSF samples from WADRC and WRAP were acquired as described

previously.31 Briefly, samples were collected by lumbar puncture (LP)

in the morning after an 8- to 12-h fast, centrifuged to remove red

blood cells or other debris, then 0.5 mL CSF was aliquoted into 1.5-mL

polypropylene tubes and stored at −80◦C within 30 min of collection.

WRAP and WADRC CSF samples were assayed at the Clinical Neu-

rochemistry Laboratory, University of Gothenburg under strict quality

control procedures. Aβ42, ptau181, and Aβ40 levels in CSF were mea-

sured using the Elecsys β-Amyloid(1-42) CSF, Elecsys Phospho-Tau

(181P) CSF, and Elecsys β-Amyloid(1-40) electrochemiluminescence

immunoassays, respectively, on the cobas e 601 analyzer (all Roche

Diagnostics International Ltd.).

ADNI CSF samples, obtained as described in the ADNI procedures

manual (http://www.adni-info.org), were also measured using Elecsys

CSF immunoassays on a cobas e 601 analyzer at the University of

Pennsylvania.32 ADNI CSF data (versions 2021-01-04 and 2019-07-

29) were downloaded in early 2022 from the ADNI database (https://

ida.loni.usc.edu) with corresponding participant demographics such as

age, sex, diagnosis, and APOE genotypes. Data were verified to be the

most currently available as of September 7, 2022.

The Elecsys CSF immunoassays had measuring ranges of 200–

1700 pg/mL for Aβ42, 0.006–40.3 ng/mL for Aβ40 (specific for lot

used), and 8–120 pg/mL for ptau181.31,32 Performance of the assays

above these technical limits had not been formally established. There-

fore, we only analyzed values within the technical limits. CSF Aβ42/40
and ptau181/Aβ42 ratios were derived from the CSF Aβ42, Aβ40, and
ptau181 values.

2.4 Statistical analyses

There were 1045 individuals available for analyses in WADRC

(n = 380), WRAP (n = 238), and ADNI (n = 427). Initial analyses used

WADRC and WRAP combined data, then replication analyses were

performed using ADNI data. Statistical analyses were performed in

R (version 4.2.0).33 Sample characteristics were compared between

studies using analysis of variance for continuous measures and chi-

square for categorical measures.

Associations between CSF biomarker (Aβ42/40 ratio, ptau181,

or ptau181/Aβ42 ratio) and APOE variable (APOE-npscore, APOE4-

status, or ε4-count)were each tested using linearmixed-effects regres-

sion in the lmerTestRpackage (version3.1-3)34 with random intercepts

for each participant to account for multiple LP visits. Self-reported

sex, clinical diagnosis (CU, MCI-AD, dementia-AD), and linear and

quadratic terms for mean centered age at LP were entered as fixed

covariates. CSF ptau181 values and the ptau181/Aβ42 ratio were

ln-transformed and standardized within study. Residual diagnostics,

used to verify covariate selection and check model assumptions, were

performed using the DHARMa R package (version 0.4.5).35 To deter-

mine goodness-of-fit and quantify differences in model fit between

APOE-npscore, APOE4-status (0, 1), and ε4-count (0, 1, 2), we com-

pared the Akaike information criterion (AIC), Bayesian information

criterion (BIC), and the proportion of variance explained by models

differing only by the APOE variable as predictor. Pseudo-R2 statis-

tics were calculated using the MuMIn R package (version 1.47.1)36

and the marginal R2 were compared to determine the difference in

variance attributable to the fixed effects portion of each model. Rel-

ative improvement between models was calculated using the ratio of

marginal R2 values.

Other R packages used included kableExtra (version 1.3.4),37

tableone (version 0.13.2),38 and sjPlot (version 2.8.11).39

3 RESULTS

3.1 Participant characteristics by study

The characteristics of participants in WADRC, WRAP, and ADNI are

shown by study in Table 1. Comparisons betweenWADRC andWRAP

are provided in Table S1 and characteristics by ADNI protocol (ADNI1,

ADNI2, ADNIGO, and ADNI3) are shown in Table S2. Participant char-

acteristics are based on the most recent LP visit; information about

multiple LP visits and biomarker values are provided based on longitu-

dinal data (1566CSF samples). Table S3 shows characteristics by study

(WADRC, WRAP, and ADNI) for a subset of CU participant samples

used in sensitivity analyses.

All studies included predominantly non-Hispanic white (NHW) and

mostly female individuals. There were significant differences in clini-

cal diagnosis across studies. WRAP was comprised of CU individuals

with a few MCI-AD, both WADRC and ADNI had similar numbers

of dementia-AD, and ADNI had the largest proportion of MCI-AD.

MeanAPOE-npscores were lower inWRAP (0.54± 1.02) thanWADRC

(0.79 ± 1.20) and ADNI (0.75 ± 1.18). Less than 14% of WADRC,

almost 27% of WRAP, and less than 17% of ADNI participants had 2

or more LPs with a mean difference ∼2.5 years between visits. Mean

ageat LPacross longitudinal sampleswas similar inWADRCandWRAP

(∼63 years) but older in ADNI (73 years). ADNI participants had sig-

nificantly higher levels of both CSF Aβ42 (913 ± 372 pg/mL) and

ptau181 (24.6 ± 12.9 pg/mL) than WADRC (Aβ42: 826 ± 364 pg/mL;

ptau181: 20.3 ± 11.4 pg/mL) and WRAP (Aβ42: 861 ± 354 pg/mL;

ptau181: 18.6 ± 6.62 pg/mL). Scatterplots of age at LP against CSF

Aβ42, Aβ42/40 ratio, and ptau181 values by study are shown in

Figure 1.
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DEMING ET AL. 5

TABLE 1 Cohort demographics at most recent lumbar puncture and longitudinal biomarkers.

Overall WADRC WRAP ADNI

n (individual participants) 1045 380 238 427

Summary diagnosis, n (%)***

Dementia-AD 95 (9.1) 48 (12.6) 0 (0.0) 47 (11.0)

MCI-AD 168 (16.1) 42 (11.1) 3 (1.3) 123 (28.8)

CU 782 (74.8) 290 (76.3) 235 (98.7) 257 (60.2)

Female, n (%)* 622 (59.5) 231 (60.8) 156 (65.5) 235 (55.0)

Self-reported race, n (%)

NHB 34 (3.3) 14 (3.7) 4 (1.7) 16 (3.7)

Other 20 (1.9) 3 (0.8) 5 (2.1) 12 (2.8)

NHW 991 (94.8) 363 (95.5) 229 (96.2) 399 (93.4)

APOE genotype, n (%)*

ε2ε2 1 (0.1) 1 (0.3) 0 (0.0) 0 (0.0)

ε2ε3 91 (8.7) 35 (9.2) 24 (10.1) 32 (7.5)

ε3ε3 535 (51.2) 177 (46.6) 131 (55.0) 227 (53.2)

ε2ε4 27 (2.6) 15 (3.9) 5 (2.1) 7 (1.6)

ε3ε4 308 (29.5) 116 (30.5) 71 (29.8) 121 (28.3)

ε4ε4 83 (7.9) 36 (9.5) 7 (2.9) 40 (9.4)

APOE-npscore, mean (SD)* 0.72 (1.16) 0.79 (1.20) 0.54 (1.02) 0.75 (1.18)

Longitudinal biomarkers

n samples 1566 498 515 553

LP visit, n (%)***

1 1045 (67.0) 380 (76.3) 238 (46.2) 427 (77.2)

2 295 (18.8) 65 (13.1) 137 (26.6) 93 (16.8)

3 145 (9.3) 26 (5.2) 93 (18.1) 26 (4.7)

4 66 (4.2) 18 (3.6) 41 (8.0) 7 (1.3)

5 12 (0.8) 6 (1.2) 6 (1.2) 0 (0.0)

6 2 (0.1) 2 (0.4) 0 (0.0) 0 (0.0)

7 1 (0.1) 1 (0.2) 0 (0.0) 0 (0.0)

Age at LP (years), mean (SD)*** 66.94 (9.15) 63.26 (9.31) 63.97 (6.93) 73.01 (7.55)

Years between visits, mean (SD)*** 2.55 (1.51) 2.57 (2.22) 2.42 (1.12) 2.84 (1.41)

Aβ42 (pg/mL), mean (SD)** 865 (364) 826 (364) 861 (354) 913 (372)

Aβ42/40 ratio, mean (SD)*** 0.06 (0.02) 0.06 (0.02) 0.06 (0.02) 0.06 (0.02)

ptau181 (pg/mL), mean (SD)*** 21.3 (11.1) 20.3 (11.4) 18.6 (6.62) 24.6 (12.9)

ptau181/Aβ42 ratio, mean (SD)*** 0.03 (0.03) 0.03 (0.03) 0.03 (0.02) 0.04 (0.03)

Note: p-values from Pearson’s Chi-squared test;Wilcoxon rank sum test.

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; APOE, apolipoprotein E; APOE-npscore, neuropathology-based APOE genetic risk score;
Aβ42, CSF amyloid-beta1-42; Aβ42/40, CSF amyloid-beta1-42 /CSF amyloid-beta1-40 ratio; CU, cognitively unimpaired; Dementia-AD, dementia suspected

due to AD; LP, lumbar puncture; MCI-AD, mild cognitive impairment suspected due to AD; NHB, self-reported non-Hispanic Black; NHW, self-reported non-

Hispanic white; ptau/Aβ42 ratio, CSF phosphorylated tau 181/CSF amyloid-beta1-42 ratio; ptau181, CSF phosphorylated tau 181; SD, standard deviation;

WADRC,Wisconsin Alzheimer’s Disease Research Center;WRAP,Wisconsin Registry for Alzheimer’s Prevention.

*p< 0.05; **p< 0.01; ***p< 0.001.

3.2 Using ε4-count provided a better model fit
than APOE4-status and explained more variance in
CSF AD endophenotypes

Some researchers use ε4-count instead of the binary APOE4-status, so

we tested if ε4-count provides a better model fit than APOE4-status.

In our preliminary analyses of WADRC and WRAP, APOE4-status

and ε4-count were associated with CSF Aβ42/40 ratio (β = −0.012,

p = 3.98 × 10−21 and β = −0.010, p = 1.04 × 10−23, respectively),

ptau181 (β = 0.258, p = 6.49 × 10−4 and β = 0.238, p = 9.20 × 10−5,

respectively), and ptau181/Aβ42 ratio (β = 0.524, p = 2.52 × 10−14

and β = 0.460, p = 7.42 × 10−17, respectively); however, models using
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6 DEMING ET AL.

F IGURE 1 Cerebrospinal fluid (CSF) biomarker levels by age at time of lumbar puncture (LP). Scatterplots of the age at time of LP against CSF
Aβ42 (A), Aβ42/40 ratio (B), and ptau181 (C) with density plots for each biomarker on top and a density plot for age at LP for all three panels on the
right-hand side of (C). Each point represents an individual CSF sample. Densities, loess curves, and points are all color-coded by study as shown in
the legend; triangle-shaped points indicate CSF sample data fromWisconsin Alzheimer’s Disease Research Center (WADRC), square-shaped
points indicate CSF sample data fromWisconsin Registry for Alzheimer’s Prevention (WRAP), and circle-shaped points indicate CSF sample data
fromAlzheimer’s Disease Neuroimaging Initiative (ADNI).

TABLE 2 Linear-mixed effects model comparisons between APOE genetic variables

CSFAβ42/40 ratio CSF ptau181 CSF ptau181/Aβ42 ratio

n R2 AIC BIC n R2 AIC BIC n R2 AIC BIC

WADRC/WRAP

APOE4-status 948 0.344 −5728 −5684 971 0.203 1641 1685 924 0.358 1781 1825

ε4-count 948 0.355 −5740 −5696 971 0.208 1637 1681 924 0.370 1770 1813

APOE-npscore 948 0.360 −5746 −5702 971 0.210 1635 1679 924 0.378 1761 1805

ADNI

APOE4-status 423 0.315 −2285 −2248 548 0.200 1156 1195 418 0.344 909 945

ε4-count 423 0.359 −2309 −2272 548 0.208 1152 1190 418 0.394 880 917

APOE-npscore 423 0.375 −2318 −2282 548 0.218 1147 1186 418 0.409 872 908

Abbreviations: ADNI, Alzheimer’s Disease Neuroimaging Initiative; AIC, Akaike Information Criterion; APOE4-status, APOE4-carrier status (0, 1);

APOE-npscore,APOE neuropathology-based score; Aβ42/40, CSF amyloid-beta1-42/amyloid-beta1-40 ratio; BIC, Bayesian InformationCriterion; CSF, cere-

brospinal fluid; n, number of observations; ptau/Aβ42 ratio, CSF phosphorylated tau 181/CSF amyloid-beta1-42 ratio; ptau181, CSF phosphorylated tau 181;

R2, marginal R2 (variation explained by fixed effects); WADRC, Wisconsin Alzheimer’s Disease Research Center; WRAP, Wisconsin Registry for Alzheimer’s

Prevention; ε4-count, number of APOE ε4 alleles (0, 1, 2).

ε4-count explained more variance than APOE4-status with 3.2% rela-

tive increase inCSFAβ42/40 ratio (marginalR2=0.355vs. 0.344), 2.5%

relative increase in ptau181 (marginal R2 = 0.208 vs. 0.203), and 3.4%

increase in ptau181/Aβ42 ratio (marginal R2 = 0.370 vs. 0.358). Model

fit comparisons are shown in Table 2 and detailed regression results in

Tables S4–S6.

As shown in Table 2, our findings were replicated in ADNI.

Models with ε4-count explained more variance than APOE4-

status with 14% relative increase explained in CSF Aβ42/40 ratio

(marginal R2 = 0.359 vs. 0.315), 4% increase in ptau181 (marginal

R2 = 0.208 vs. 0.200), and 14.5% increase in ptau181/Aβ42 ratio

(marginal R2 = 0.394 vs. 0.344). Detailed results are shown in Tables

S7–S9.

3.3 APOE-npscore provided a better model fit
than ε4-count and explained more variance in CSF
AD endophenotypes

After determining that ε4-count provided a better model fit than

APOE4-status, we tested if the APOE-npscore improved the model fit

even more than ε4-count. In the WADRC and WRAP, APOE-npscore

was associatedwith CSF Aβ42/40 ratio (β=−0.006, p= 6.63× 10−25),

ptau181 (β = 0.140, p = 2.35 × 10−5), and ptau181/Aβ42 ratio

(β = 0.264, p = 1.09 × 10−18). Models using APOE-npscore explained

more variance than ε4-count with a relative increase of 1.4% variance

explained in CSF Aβ42/40 ratio (marginal R2 = 0.360 vs. 0.355), 1%

increase in ptau181 (marginal R2 = 0.210 vs. 0.208), and 2.2% increase
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DEMING ET AL. 7

explained in ptau181/Aβ42 ratio (marginal R2 = 0.378 vs. 0.370). As

shown in Table 2, both AIC and BIC model selection criteria consis-

tently supported models using the APOE-npscore over models using

the ε4-count and models using the APOE4-status. Detailed results are

shown in Tables S4–S6.

Our findings were replicated in the ADNI. APOE-npscore explained

more variance than ε4-count with a relative increase of 4.5% explained

in CSF Aβ42/40 ratio (marginal R2 = 0.375 vs. 0.359), 4.8% increase

in ptau181 (marginal R2 = 0.218 vs. 0.208), and 3.8% increase in

ptau181/Aβ42 ratio (marginal R2 = 0.409 vs. 0.394). Detailed results

are shown in Tables S7–S9.

3.4 APOE-npscore provided a better model fit in
a subset of cognitively unimpaired participants

Previous studies have reported preclinical effects of APOE4-status

and ε4-count on CSF AD biomarkers.40,41 To test if the APOE-npscore

could provide a better model fit than APOE4-status and ε4-count
when analyzing CSF AD endophenotypes before cognitive symptoms

appear, we reran the analyses in a subset of longitudinal samples from

participants who were CU at LP (described in Table S3). There were

significant associations between CSF Aβ42/40 ratio and the APOE-

npscore (β = −0.005, p = 1.06 × 10−18), APOE4-status (β = −0.011,

p = 1.47 × 10−16), and ε4-count (β = −0.010, p = 4.63 × 10−18);

between ptau181 and APOE-npscore (β = 0.110, p = 1.52 × 10−3),

APOE4-status (β = 0.217, p = 4.68 × 10−3), and ε4-count (β = 0.191,

p = 3.32 × 10−3); and between ptau181/Aβ42 ratio and APOE-

npscore (β = 0.241, p = 1.17 × 10−13), APOE4-status (β = 0.491,

p = 1.04 × 10−11), and ε4-count (β = 0.437, p = 7.85 × 10−13).

There was also more variance explained by the APOE-npscore than

the APOE4-status with a relative increase of 3.7% in CSF Aβ42/40
ratio (marginal R2 = 0.222 vs. 0.214), 1.4% in CSF ptau181 (marginal

R2 = 0.150 vs. 0.148), and 4.9% in CSF ptau181/Aβ42 ratio (marginal

R2 = 0.216 vs. 0.206). APOE-npscore also explained more variance

than ε4-count with a relative increase of 1% in CSF Aβ42/40 ratio

(marginal R2 = 0.222 vs. 0.220) and 1.4% in ptau181/Aβ42 ratio

(marginal R2 = 0.216 vs. 0.213), but no difference in ptau181 (marginal

R2 = 0.150 vs. 0.150). Both AIC and BIC model selection criteria con-

sistently supported models using the APOE-npscore (Aβ42/40 ratio:

AIC = −5175, BIC = −5137; ptau181: AIC = 1304, BIC = 1342;

ptau181/Aβ42 ratio: AIC = 1512, BIC = 1550) over models using

the ε4-count (Aβ42/40 ratio: AIC = −5172, BIC = −5134; ptau181:

AIC=1305,BIC=1343; ptau181/Aβ42 ratio:AIC=1516,BIC=1553)

and models using the APOE4-status (Aβ42/40 ratio: AIC = −5165,

BIC = −5127; ptau181: AIC = 1306, BIC = 1344; ptau181/Aβ42
ratio: AIC = 1521, BIC = 1558). Detailed results are shown in Tables

S10–S12.

These findings were replicated in a subset of samples from partici-

pants whowere CU in ADNI (described in Table S3). CSFAβ42/40 ratio
was associated with the APOE-npscore (β=−0.009, p= 8.13 × 10−12),

APOE4-status (β=−0.018, p=5.94×10−9), and ε4-count (β=−0.016,
p = 6.78 × 10−11). CSF ptau181 was associated with APOE-npscore

(β=0.181, p=3.74×10−4), APOE4-status (β=0.324, p=4.04×10−3),

and ε4-count (β = 0.298, p = 1.54 × 10−3). The CSF ptau181/Aβ42
ratio was associated with APOE-npscore (β= 0.335, p= 8.55 × 10−11),

APOE4-status (β = 0.602, p = 3.26 × 10−7), and ε4-count (β = 0.583,

p = 8.93 × 10−10). There was more variance explained by the APOE-

npscore than the APOE4-status with a relative increase of 20.5% in

CSF Aβ42/40 ratio (marginal R2 = 0.264 vs. 0.219), 9% in CSF ptau181

(marginal R2 = 0.182 vs. 0.167), and 22.5% in CSF ptau181/Aβ42
ratio (marginal R2 = 0.299 vs. 0.244). APOE-npscore also explained

more variance than ε4-count with a relative increase of 6.5% in CSF

Aβ42/40 ratio (marginal R2 = 0.264 vs. 0.248), 5.8% in ptau181

(marginal R2 = 0.182 vs. 0.172), and 6% in ptau181/Aβ42 ratio

(marginal R2 = 0.299 vs. 0.282). Both AIC and BIC model selection cri-

teria consistently supportedmodels using theAPOE-npscore (Aβ42/40
ratio: AIC = −1422, BIC = −1387; ptau181: AIC = 657, BIC = 696;

ptau181/Aβ42 ratio: AIC = 508, BIC = 543) over models using the ε4-
count (Aβ42/40 ratio:AIC=−1418,BIC=−1382; ptau181:AIC=660,

BIC = 699; ptau181/Aβ42 ratio: AIC = 513, BIC = 548) and models

using the APOE4-status (Aβ42/40 ratio: AIC = −1409, BIC = −1373;

ptau181: AIC = 662, BIC = 701; ptau181/Aβ42 ratio: AIC = 525,

BIC= 560). Detailed results are shown in Tables S13–S15.

4 DISCUSSION

We report here a method for translating APOE haplotype (ε2ε2, ε2ε3,
ε2ε4, ε3ε3, ε3ε4, and ε4ε4) into a pseudo-continuous measure reflect-

ingAPOE genetic risk for autopsy-confirmedAD.Wedemonstrated the

APOE-npscore provides a better model fit than dichotomous APOE4-

status, and even ε4-count, in statistical models of CSF endophenotypes

for AD neuropathology (Aβ42/40 ratio, ptau181, and ptau181/Aβ42
ratio). Although some of the statistical improvements we reported

in this study were small, there are several benefits of using APOE-

npscore in AD-related research. Not only does it more accurately

represent corresponding risk for each haplotype, the APOE-npscore

more closely reflects the genetic effect of APOE on AD neuropathol-

ogy. It allows researchers to account for effects of ε2 and ε4 in one

variable. As an improvement to APOE clinical risk scores, by using

the results of a large autopsy-confirmed AD case-control study,12

we minimize bias from misclassified dementia cases and preclinical

controls.

CSF biomarkers change years before cognitive symptoms appear

and are not only correlated with AD neuropathology but also with

APOE.1,22,42 As expected, all the methods we tested for encoding

APOE genotype were significantly associated with CSF Aβ42/40 ratio,

ptau181, and ptau181/Aβ42 ratio. In all three AD endophenotypes,

APOE-npscore appeared to provide a better model fit than APOE4-

status and ε4-count and there was more variance explained by the

APOE-npscore models, consistently observed in WADRC, WRAP, and

ADNI as well as subsets of CU individuals. These findings suggest

that studies of preclinical AD, such as personalized prevention tri-

als, could benefit from using the APOE-npscore instead of separating

groups by APOE4-status. The APOE-npscore provides a better model
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8 DEMING ET AL.

fit for CSF AD endophenotypes and likely would do the same for trial

endpoints. The APOE-npscore could easily be translated to APOE4-

status or ε4-count if needed, but the opposite isn’t necessarily true.

Using the APOE-npscore in trial design would require genotyping both

APOE SNPs (rs429358 for ε4, rs7412 for ε2) and place greater empha-

sis on recruiting rarer ε2 carriers than designs that use APOE4-status,

but the added benefit is that the precision of the APOE-npscore could

help personalize treatment.

There are important limitations in this study to consider for future

research. The Reiman et al. study that provided OR used to derive

the APOE-npscore consisted of NHW individuals12 and the cohorts

included in our analyses comprised > 94% NHW participants. With

reported disparities in biomarker outcomes and in APOE genetic risk,

there is evidence our findings may not translate directly to other

populations.43–54 Self-identified non-Hispanic Black (NHB) individuals

are at a greater risk of AD dementia than NHW; however, even though

APOE ε4 is more common in African genetic ancestry (rs429358 MAF:

0.26 in AFR vs. 0.14 in EUR), studies suggest APOE ε4 has a weaker

effect, or no effect, on AD dementia in NHB individuals.45–49 Linkage

disequilibrium structure of the APOE gene region varies across genetic

ancestries,50 and studies show there are genetic haplotypes predom-

inantly present in African genetic ancestry that may explain some of

the differences in APOE genetic effect on AD risk.3,51 Disparities in

the APOE ε4 genetic effect on AD risk have been observed in other

populations. Although studies of Chinese patients show that APOE ε4
increases risk for AD similar to NHW,52,53 a study of neuroimaging and

cognitive testing from 811American Indians in the Strong Heart Study

found no evidence of increased risk from APOE ε4.54 Racial disparities
in these examples and other AD biomarker studies demonstrate that

although race is not a biological construct, the biological outcomes of

interest are confounded by racial disparities in study recruitment and

research.55,56 Further research with diverse cohorts will be necessary

to test and adapt the APOE-npscore to be useful for a much broader

group of people, many of whom are at an even greater risk for AD

dementia than NHW individuals.

Another limitation is thatwewere unable to evaluateAPOE-npscore

performance directly because the training data from Reiman et al. was

available as summary statistics, not individual-level data, and our cur-

rent testing data do not have the same phenotype (autopsy-confirmed

AD diagnosis) for validating the APOE-npscores. Future research to

evaluate the APOE-npscore will require an independent dataset with

individual-level autopsy data; ideally a diverse cohort that could help

fine-tune the APOE-npscore to be useful for the broader population.

Our findings in WRAP and WADRC were replicated in the indepen-

dent ADNI cohort, which is promising. Since theAPOE-npscore is easily

derived from theAPOE ε2/ε3/ε4 haplotypes, we anticipate several stud-
ies will be able to benefit from the improvedmethod for accounting for

APOE genetic risk.
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